ENGINEERING THERMODYNAMICS

Course Code	19ME3302	Year	II	Semester	I	
Course Category	Program Core	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	2 - 1 - 0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes				
After successful completion of the course, the student will be able to				
CO1	Learn the terminology and basic concepts of thermodynamics and capable of analyzing zeroth and first law of thermodynamics	L1		
CO2	Analyze Second law of thermodynamics and working of various devices with heat and work transactions.	L4		
CO3	Assess quality and quantity of energy and analyze Exergy	L5		
CO4	Recognize and understand different phases of pure substances and familiarize with saturated and superheated steam property tables and charts	L2		
CO5	Learn power producing thermodynamic cycles capable of making their analysis and evaluate the relative performance	L1		

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				2	2	2				2	2	2
CO2	3	3				3	3	2				2	2	2
CO3	3	3				3	3	2				2	2	2
CO4	2	2				3	3	2				2	2	2
CO5	3	3				3	3	2				2	2	2

Syllabus					
Unit No.	Contents	Mapped COs			
I	INTRODUCTION: Macroscopic and microscopic viewpoints, definitions of thermodynamic terms, quasi – static process, point and path function, forms of energy, ideal gas and real gas, Zeroth law of thermodynamics. FIRST LAW OF THERMODYNAMICS: Joule's experiment - first law of thermodynamics, corollariesperpetual motion machines of first kind, first law applied to non-flow and flow process- limitations of first law of thermodynamics.	CO1			
II	SECOND LAW OF THERMODYNAMICS: Kelvin - Planck statement and Clausius statement and their equivalence, corollaries - perpetual motion machines of second kind - reversibility and irreversibility, cause of irreversibility - Carnot cycle, heat engine, heat pump and refrigerator, Carnot theorem, Carnot efficiency.	CO2			

Ш	ENTROPY: Clausius inequality - Concept of Entropy- entropy equation for different processes and systems, Maxwell relations, TDS						
	equations	CO3					
	AVAILABILITY AND IRREVERSIBILITY:						
	Definition of exergy and energy, expressions for availability and						
	irreversibility. Availability in steady flow, non-flow processes,						
	irreversibility.						
	PROPERTIES OF STEAM AND USE OF STEAM TABLES:						
IV	Pure Substances, P-V-T surfaces, dryness fraction, property tables, T-s and						
•	h-s diagram (Mollier chart), analysis of steam undergoing various	CO4					
	thermodynamic processes using Mollier chart– steam calorimetry.						
	THERMODYNAMIC CYCLES:						
	Otto, Diesel, Dual Combustion cycles, Sterling Cycle, Atkinson Cycle,						
V	Ericsson Cycle, Lenoir Cycle, Brayton Cycle - Description and	CO5					
	representation on P-V and T-S diagram, Thermal Efficiency, Mean						
	Effective Pressures on Air standard basis – comparison of Cycles.						

Learning Recourse(s)

Text Book(s)

- 1. P.K.Nag, Engineering Thermodynamics, 5/e, Tata McGraw Hill, 2013.
- 2. Van Wylen, Fundamentals of Classical Thermodynamics, G.J.John Wylie./ S chand Publications

Reference Book(s)

- 1. Yunus A. Cengel, Michaela A. Boles, Thermodynamics, 7/e, Tata McGraw Hill, 2011.
- 2. P.L.Dhar, Engineering Thermodynamics a generalized approach, Elsevier
- 3. J.B.JonesandG.A.Hawkins,IntroductiontoThermodynamics, 2/e, John Wiley & Sons,2012.
- 4. Moran, Michael J. and Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 3/e, Wiley, 2015
- 5. Claus Borgnakke Richard E. Sonntag, Fundamentals of Thermodynamics, 7/e, Wiley, 2009
- 6. R.K. Rajput, S.Chand& Co., Thermal Engineering, 6/e, Laxmi publications, 2010.

e-Resources & other digital material

- 1. https://nptel.ac.in/courses/112/105/112105266/
- 2. https://nptel.ac.in/courses/112/105/112105220/
- 3. https://nptel.ac.in/courses/101/104/101104067/
- 4. https://nptel.ac.in/courses/101/104/101104063/
- 5. https://nptel.ac.in/courses/103/104/103104151/